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Abstract

An investigation is made of the vibrational dephasing of a diatomic molecule

adsorbed on a surface. Explicit analytic forms for the rate of dephasing by
p

phonons are derived. For comparison, an expression for energy relaxation is

given which is appropriate for OH on SiO2. It is found that the dephasing rate

is considerably faster for this system than the energy relaxation rate. These

conclusions are compared with the results of a recent experiment.
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I. Introduction

The ways in which molecular vibrations relax at surfaces are of considerable

interest in dynamical studies, not least for investigating the possibility of

bond-selective chemistry. Recently, I an experiment was reported which has for

.the first time directly measured the rate of vibrational energy relaxation of an

adsorbed species (OH on SiO 2, v-1+v-0). Knowledge of the total width of the

absorption line2 then allows an estimate of the pure dephasing rate through the

relation 1/T 2 - 2/T 1 + 1/T where TI and ' are the energy and pure phase

relaxation times, respectively. There are undoubtedly many relaxation pathways,

including direct coupling of the molecular mode to the phonons and formation of

electron-hole pairs.3 Silica, however, is a substrate in which the latter

mechanism can be effectively ruled out.

We advance here a treatment of pure vibrational dephasing of an adsorbed

diatomic molecule, via direct vibration-phonon coupling. For the sake of

comparison, we give an expression for a T, pathway appropriate for OH/Si02 The

model involves an anharmonic oscillator (A-B) coupled through an anharmonic bond

(S-A) to a linear chain of harmonic oscillators. We show that phase relaxation

is about 10-102 times faster for this system' than energy relaxation, in broad

agreement with experiment. We also find the coupling to low frequency

librational modes to be unnecessary for explaining experimental results. In

this regard we feel it worth emphasizing the advantages of a linear chain model

when the admolecule Is aligned end-on at the surface. The assumption is that the

dynamics of admolecule and surface is dominated by the motion of the whole

system in the z-direction. Such a model has recently been successfully applied

to the study of the desorption of an adatom. The incorrect notion, that a

linear chain model is one-dimensional in every respect, is quite widespread. In

q
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fact, the density of states, a quantity needed for the calculation of rate

information, is obtained from a fully three-dimensional (Debye) treatment, in

which the phonon modes are assumed to form an isotropic continuum. The only

real assumption apart from this is that the molecular dynamics is dominated by

motion in a particular direction. Provided this is the case, such models are

expected to give the correct order of magnitude.

2. Model

The details of the model are as follows. The momentum and position normal

coordinates of the diatom-surface system are denoted by (p1 ,qI) and (p2,q2).

When the frequencies of the bonds are sufficiently different, the motion of the

center of mass of AB relative to the surface may be identified as one normal

mode, and the vibration of A relative to B as the other. Thus we may make the

identities q1 = z and q2 - x. We shall focus on these position coordinates for

the Taylor expansion of the potential, although in fact the nonadiabatic terms

due to p1 and p2 give contributions of a similar order of magnitude.
5 The first

term, in the Taylor expansion of the interaction potential, which gives rise to

pure dephasing (i.e., the leading term in the expansion which is diagonal in the

2 6
vibrational mode of the admolecule) is the quartic k x term.

In the theory of spectral lineshape, the width of a line is given by the

-7
imaginary part of the Zwanzig memory tetradic <T(w fi+ic)>fifi, where c is an

infinitesimal quantity and the transition is being made between the initial (i)

and final (f) state of the system. This may be expanded in powers of the

interaction Liouville operator. In the Markov limit (short memory, T is

constant) and in first order, there are two kinds of term: one represents

contributions to the linewidth from inelastic scattering out of levels f and I,

the other represents elastic transitions. The latter are identified with the

"pure dephasing" interaction and an associated rate 1/T given by:8

S.

A '°
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(I<aIV (b) 2 <V (b)>2 A ()f ) , (la)

aBB
2 cg,B a i a

where the bath-system interaction is assumed to be of the Form v(b)S) in

obvious notation.
A . (¢S) .e<fly(s)lf - i s)Ii 2

fl "- mi~V I>m (2)

is the relative displacement of the levels i and f of the molecule due to the

anharmonic interaction with the bath; d is the canonical density operator for

the bath, which is assumed to be diagonal and therefore describes the bath at

thermal equilibrium. The indices u and 6 represent entire states of the bath.

Put another way, Eq. (1a) represents the thermally averaged rate of Rayleigh

scattering of phonons by the system (admolecule).

On the other hand, the inelastic rates are given, in ttie Markov limit, by

the Golden Rule expression:

T 2 X 1 do I<aIVI(b) (w>2 '(s)12 i (1b)

*-. a ,B fvfi 6(wag-wif)

which Is essentially the thermally averaged rate of phonon absorption and

emission by the system.

In order to introduce the bath-system coupling, we first evaluate the

dynamics of AB moving with respect to a frozen surface atom S (i.e., the surface

is represented by an atom of infinite mass). The influence of the thermal

fluctuations of the lattice is then introduced by allowing the surface to

displace by an amount u, which is fluctuating with time. Moreover, the

assumption of Markovian behavior implies u(t) is uncorrelated with u(t'), tot'.

We replace z with z-u and express u in terms of a Fourier sum over the normal

coordinates of the lattice:
9

-iwt iWkt'1i._ 1 /2. -1/2 a k

u(t)- (2-) w k ae ake ) (3)
-k
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where there are N atoms in the chain, each of mass M, and ak,ak are the creation

and annihilation operators for mode k, which has frequency wk'

First, we consider the dephasing of a two-level molecule attached to a

surface. By making a Taylor expansion of the interaction it is possible to pick

out terms which contribute to the process of interest. The first term in the
2 2

interaction which gives rise to pure dephasing is k22 u x , and therefore

v(b)v(s) 2 2
V k202 u x (4)

Here, the subscripts represent the degree of excitation of phonons, adbond and

molecule, respectively. Substituting Eqs. (3) and (4) into Eq. (la) yields

irk2 () 2 -
TI d (I<ala t a aatI 2 -n k6kk,) 0 (5a)2 T 4M2N 2  k,k' 8

Here, nk is the thermal average of nk, and Is equal to (e8-1) - , with 8 -

k Bk41W "i k AB BT.

Converting the sum to an integral gives

2
1 irk22  ( (p(Wk)P(k,_ _- A)dkknk(nk,+1) , (5 b)

2 4M2N2 10 j dwkdk' k k

where p(x) is the density of modes of frequency x. We now invoke the Debye

approximation, in which the phonon states of 2a solid form an isotropic continuum
2

Wk
with a density of states given by p(wk) L N, where w is the Debye frequency

W 
D

of the solid. This yields:

I" .9irk 2

1 22 A(s) (6a)
T' l 2 1 02 5M wD

where

:"":(. WD -2 + 2

I - dw(n n )w (6b)
JO k k k k

In order to evaluate in Eq. (6a), we take the states 11> andl10 to bel1>m

states of a harmonic oscillator, when

-----------------,-- , -
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<j I x21J>m - 2 1.AB(AB

Here, AB is the reduced mass of the admolecule and w its fundamental

frequency. Moreover, we can define two limiting cases for which analytic

solutions to Eq. (6b) are possible. In the limit of low temperature, B >> 1,

and wD may be taken to be infinity. In the limit of high temperature, e << 1

and the exponentials in the expression for nk may be expanded, while retaining

only the first term. Then we arrive at the following equations for the pure

dephasing rate:

33k2 k3
" "2  B T kBT << iw (8a)

T ~ ~ A ABM 2D• n "A6 'Ar,' D

97ir k 2k2
k2kB T2 kBT >> 1w (8b)

2 2 2 5  B D' T 4 M2 AB AB D

Consider now the energy relaxation of A-B. In the case of OH/SiC02, WD - 340
-, r-1 -1 -1z- ) ,

cm, WAS = 970 cm and wAB 3700 cm . Therefore, the first important

5
interaction giving rise to energy relaxation is the sextic term, (z-u) x, and in

9- 14
particular uz x which destroys one phonon, creates four quanta of adbond

excitation and destroys the quantum of vibrational excitation in OH. Moreover

we note that a direct one phonon deactivation of AB is not allowed by energy

conservation, and that it would require at least eleven phonons.

We now identify eigenstates of the system as products of adbond states and

molecular states. Using Eq. (Ib) together with the Debye density of states

yields

. 1 3"wy2  -),(,a)

D... .. .. ... .. . .. .. .E:;7
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9q.-

where

Y k 141 a<41Z 4l> a mb<olxl > , (9b)

and wp 4wSA - WAB; kl41 is the coefficient of uz x. For simplicity we have

taken the eigenstates of the adbond to be harmonic oscillator states. This is

clearly a cruder approximation than making AB harmonic, especially given the

level of excitation of SA (four quanta). However, there is little detailed

information about the silica-hydroxyl bond, and we are in any case interested

only in making an estimate of the rate of energy relaxation for this system.

The Introduction of anharmonicities into the SA bond will make the calculation

only slightly more complicated. (Clearly, the interaction Hamiltonian depends

only on the anharmonicity of the bond!)

It remains to determine k and k1. Obviously, we must here take a
202 141i

proper account of the anharmonicity of the adbond, SA; indeed we shall make the

assumption that this is the principal contributor to the coupling between the

adbond and the molecular band AB. The validity of this assumption will be

10
assessed at a later time. Further we make the assumption that z, the distance

between the surface and the center-of-mass of ABis given approximately by the

distance SA. This assumption is expected to' be reasonable when A is must more

massive than B (as in OH). Therefore, the motion of the AB bond gives rise to a

modified Morse potential for SA in which the distance parameter is z-ax, where o

is the ratio (MB/MA). A simple expansion of the Morse potential around the

equilibrium distance then gives terms containing various combinations of powers
of z and x. We are interested in the coefficient of the terms z2x 2 and z5X.

2 24
Next we replace z with z-u and pick out the coefficients of u x and uz x. We

obtain finally

@........................".. ~. .
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k 5 a4ao2D (lOa)202 6k _1
k 316(lb

141 11 a) D

where a is the strength parameter of the AS Morse potential and D is the well

1/2depth. The parameter a may be written as (IAs/ 3D) . To the best of our

knowledge, D is an unknown quantity for OH/SiO 2, but we shall take it to be 1

2.eV, noting that both energy and phase relaxation depend upon D - . Thus changing

D by a factor of 2 will result in a change in rate of a factor of 4. Finally,

we use a Debye temperature for SiO 2 of 485 K and take the molecular weight, M,

of the SiO 2 unit cell to be 60. From Eqs. (8a) and (9a) we now obtain T' -
4ps

14 -1 -4 -
and T, 2 x 10 ps, corresponding to widths of 1.3 cm and 2.6 x 10 cm

respectively. It is immediately clear that the calculated value for T is about

two orders of magnitude larger than the experimental value. However, the value

of T' is in much better agreement with the available Information on this
11 -1

*. system, where it is believed that the pure dephasing width < 1 cm

The large discrepancy between the observed and calculated values of T is

very interesting, particularly since one of the approximations involved the

assumption of a harmonic adbond for the calculation of k141 in Eq. (9b).

Removal of this assumption will undoubtedly increase the estimate of T still

further. It is unlikely that the approximation either of the Debye model or of

the linear chain dynamics are very important here. Of much greater importance

is the crudity of our use of a Morse potential to estimate anharmonicities,

particularly as (for TI) the relevant terms are sextic.

However, the discrepancy is sufficiently large that we may tentatively

postulate a different mechanism for the energy relaxation. The reason the

mechanism given here leads to such long relaxation times is that the vibrational

A-



quantum of the molecular bond is so large that energy transfer requires several

quanta of excitation of other modes, and this is a process requiring at least a

sextic anharmonicity. The direct excitation of the substrate requires at least

eleven phonons and may be presumed to be insignificant. It is possible that the

OH couples to another kind of high-frequency mode, such as the Si-OH bend, although

this mode is likely to be of a somewhat lower frequency than the Si-OH stretch we

have considered. An interesting possibility is the direct energy exchange between

adjacent hydoxyl groups on the surface. Even for weak coupling, such a pathway may

be favored because the vibrational energy mismatch is zero. However, the irrevers-

*" ibility of energy relaxation demands several adjacent, anharmonically-coupled

hydoxyl groups. In this regard, therefore, it will be interesting to see if

increases with decreasing coverage.

As far as pure dephasing is concerned, the influence 6f an adjacent hydroxyl

may be crudely modelled in terms of a dipole-dipole interaction. 1 3 Since the

dipole moment depends upon vibrational state, such an interaction gives rise to

a relative displacement of vibrational levels, which leads to a dephasing. For

H 20 the vibrational dependence of the dipole is known and the dephasing

-1
contribution at room temperature may be estimated to be about .01 cm

Assuming things are similar for OH, we can therefore rule out this contribution

to the pure dephasing, since the calculated phonon-mediated contribution is two

orders of magnitude faster. The calculation of the contribution of this

admolecule-admolecule interaction to energy relaxation is less straightforward,

and will be possible only when the anharmonic interaction between adjacent

hydroxyl groups is known. It is also possible that the k14 1 term is much larger

than our estimate, so that energy exchange with the lattice is important.

Definitive answers await further experimental information.

During preparation of this manuscript we become aware of a recent paper by

12
Persson, which is similar in spirit to the present work. There a comparison



was made between energy relaxation and dephasing of the adbond, specifically for

CO on nickel. The present work, on the other hand, describes relaxation of the

molecular bond. Moreover, we have for the first time presented explicit

analytical forms for T'
2"

Conclusion

We have derived expressions for pure vibrational dephasing and for

vibrational energy relaxation of a diatomic molecule on a surface. The inodel

involves the coupling of the molecular mode to bulk phonons. This is given in

terms of the anharmonicities of the molecular and admolecular vibrations. By

making an estimate of thee quantities for OH on SiO2 , we have shown that the

prediction of the pure vibrational phase relaxation is in agreement with

available experimental information, but the energy relaxation rate is two orders

of magnitude smaller than experiment. This indicates the possibility of

another mechanism in this case, and the obvious candidate is energy transfer

between adjacent hydroxyl groups. A definitive answer will not be possible until

the anharmonicities are known accurately. The influence of surface phonons will

be assessed at a later time. 0 The inclusion of such modes is expected to be

important for molecules lying across the surface as opposed to end-on, as in the

present case. This is because of the expected efficient coupling between the

lateral motion of the surface atoms and the motion of the molecular bond.
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